Prove that \( (\sin \alpha +\cos \alpha)(\tan \alpha + \cot \alpha)=\sec \alpha +\text{cosec} \alpha \)
To prove \( (\sin \alpha +\cos \alpha)(\tan \alpha + \cot \alpha)=\sec \alpha +\text{cosec} \alpha \)
Solution:
L.H.S \(= (\sin \alpha +\cos \alpha)(\tan \alpha + \cot \alpha)\)
\(= (\sin \alpha +\cos \alpha)(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha})\)
\(= (\sin \alpha +\cos \alpha)(\frac{\sin^2 \alpha+\cos^2 \alpha}{\cos \alpha \sin \alpha})\)
\(= (\sin \alpha +\cos \alpha)(\frac{1}{\cos \alpha \sin \alpha})\)Â Â Â Â [\(\because \sin^2 \theta + \cos^2 \theta =1\)]
\(= \frac{(\sin \alpha +\cos \alpha)}{\cos \alpha \sin \alpha}\)
\(= \frac{\sin \alpha }{\cos \alpha \sin \alpha}+\frac{\cos \alpha }{\cos \alpha \sin \alpha}\)
\(= \frac{1 }{\cos \alpha}+\frac{1}{ \sin \alpha}\)
\(= \sec \alpha +\text{cosec} \alpha\)
Therefore, \( (\sin \alpha +\cos \alpha)(\tan \alpha + \cot \alpha)=\sec \alpha +\text{cosec} \alpha \)Â Â proved.