To prove\( \frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \text{ cosec} \theta \)
Solution:
L.H.SÂ \(= \frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}\)
By taking LCM of denominator, we get
\(= \frac{\sin^2 \theta+(1+\cos \theta)^2}{(1+\cos \theta) \sin \theta}\)
Splitting \((1+\cos \theta)^2\)Â by using the identity \((a+b)^2=a^2+b^2+2ab\), we get
\(= \frac{\sin^2 \theta+1+\cos^2 \theta +2\cos \theta}{(1+\cos \theta) \sin \theta}\)
\(= \frac{\sin^2 \theta+\cos^2 \theta +1+2\cos \theta}{(1+\cos \theta) \sin \theta}\)
\(= \frac{1 +1+2\cos \theta}{(1+\cos \theta) \sin \theta}\)
\(= \frac{2+2\cos \theta}{(1+\cos \theta) \sin \theta}\)
\(= \frac{2(1+\cos \theta)}{(1+\cos \theta) \sin \theta}\)
\(= \frac{2}{ \sin \theta}\)
\(=2 \text{cosec} \theta \)    [As \( \text{cosec} \theta =\frac{1}{\sin \theta}\)]
= R.H.S
Hence, \( \frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \text{ cosec} \theta \) proved.