The number of real roots of the equation \(\sqrt{x^2-4x+3}+\sqrt{x^2-9}=\sqrt{4x^2-14x+6}\), is (a) 3 (b) 2 (c) 0 (d) 1

0
Maths_Expert_3
Nov 08, 2024 08:46 PM 1 Answers JEE
Member Since Oct 2022
Subscribed Subscribe Not subscribe
Flag(0)

The number of real roots of the equation (sqrt{x^2-4x+3}+sqrt{x^2-9}=sqrt{4x^2-14x+6}), is

(a) 3

(b) 2

(c) 0

(d) 1

1 Subscribers
Submit Answer
Please login to submit answer.
1 Answers
Best Answer
0
Maths_Expert_3
Feb 15, 2025
Flag(0)

\(\textbf{Solution}\)

\(\textbf{Step 1: Simplify the equation by taking out the common factor}\)

\(\sqrt{x^2-4x+3}+\sqrt{x^2-9}=\sqrt{4x^2-14x+6}\)

\(\Rightarrow\sqrt{(x-3)(x-1)}+\sqrt{(x-3)(x+3)}=\sqrt{2(2x^2-7x+3)}\)

\(\Rightarrow\sqrt{(x-3)(x-1)}+\sqrt{(x-3)(x+3)}=\sqrt{2(2x^2-6x-x+3)}\)

\(\Rightarrow\sqrt{(x-3)(x-1)}+\sqrt{(x-3)(x+3)}=\sqrt{2(2x(x-3)-1(x-3)}\)

\(\Rightarrow\sqrt{(x-3)(x-1)}+\sqrt{(x-3)(x+3)}=\sqrt{2((2x-1)(x-3)}\)

\(\Rightarrow\sqrt{(x-3)(x-1)}+\sqrt{(x-3)(x+3)}-\sqrt{2((2x-1)(x-3)}=0\)

\(\Rightarrow(\sqrt{(x-3)})(\sqrt{(x-1)}+\sqrt{(x+3)}-\sqrt{2((2x-1)})=0\)

\(\textbf{Step 2: Solve the equation}\)

\(\sqrt{x-3}=0\)  or \(\sqrt{(x-1)}+\sqrt{(x+3)}-\sqrt{2((2x-1)}=0\)

\(\Rightarrow x=3\) or \(\sqrt{(x-1)}+\sqrt{(x+3)}-\sqrt{2((2x-1)}=0\)

 

\(\sqrt{(x-1)}+\sqrt{(x+3)}=\sqrt{2((2x-1)}\)

Squaring both sides we, get

\(x-1+x+3-2\sqrt{(x-1)(x+3)}=2(2x-1)\)

\(\Rightarrow 2x+2-2\sqrt{(x-1)(x+3)}=2(2x-1)\)

\(\Rightarrow x+1-\sqrt{(x-1)(x+3)}=(2x-1)\)

\(\Rightarrow -\sqrt{(x-1)(x+3)}=(x-2)\)

Squaring both sides, we get

\(\Rightarrow (x-1)(x+3)=(x-2)^2\)

\(\Rightarrow x^2+2x-3=x^2-4x+4\)

\(\Rightarrow 6x-3=4\)

\(\Rightarrow x=\frac{7}{6}\)

\(\textbf{Step 3: Check whether values of}\) \(\mathbf{x}\) \(\textbf{satisfying the domain of equation}\)

Values of \(x\) are \(3 \text{and } \frac{7}{6}\) but for \(x=\frac{7}{6}\) the expression \(\sqrt{4x^2-14x+6}\) is undefined.

Because, \(\sqrt{4x^2-14x+6}=\sqrt{2((2x-1)(x-3)}\)

\(=\sqrt{2((2(\frac{7}{6})-1)(\frac{7}{6}-3)}\)

\(=\sqrt{2((\frac{4}{3})(\frac{-11}{6})}\)

\(=\sqrt{-\frac{44}{9}}\)

[Which is undefined because the expression inside square root is negative, as we know square root function is defined for either zero or positive input only]

Thus, \(x=3\) is the only solution.

Therefore, the number of solution of the equation is only 1.

\(\textbf{Hence, the correct answer is option (d).}\)

 

Sign in to Reply
Replying as Submit

0