If \(x^x=2^{2048}\), find \(x\).

0
Maths Expert_1
Sep 23, 2024 12:29 PM 1 Answers Class 8
Member Since Apr 2024
Subscribed Subscribe Not subscribe
Flag(0)
0 Subscribers
Assign to:
Submit Answer
Please login to submit answer.
1 Answers
Best Answer
0
Maths_Expert_3
Oct 30, 2024
Flag(0)

Answer: \(x=2^8\) or \(256\)

Solution:

Give: \(x^x=2^{2048}\)

Step 1: Write \(\mathbf{2048}\) as product of its prime

2 2048
2 1024
2 512
2 256
2 128
2 64
2 32
2 16
2 8
2 4
2 2
1

Therefore, \(2048=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2=2^{11}\)

Step 2: Use the laws of exponent and write the expression in RHS in form of \(\mathbf{a^a}\).

\(x^x=2^{2048}\)

\(\Rightarrow x^x=2^{2^{11}}\)

\(\Rightarrow x^x=2^{2^{3+8}}\)

\(\Rightarrow x^x=2^{2^{3}\cdot 2^{8}}\)         [\(∵ a^{m+n}=a^m\times a^n\)]

\(\Rightarrow x^x=2^{8\cdot 2^{8}}\)

\(\Rightarrow x^x=(2^8){2^{8}}\)             [\(∵ a^{mn}=(a^m)^n\)]

\(\Rightarrow x=2^8\)

\(\Rightarrow x=256\)

Hence, the value of \(\mathbf{x}\) which satisfy the equation \(\mathbf{x^x=2^{2048}}\) is \(\mathbf{2^8}\) or \(\mathbf{256}\).

Sign in to Reply
Replying as Submit

0