In order to solve the problem: If \(x^4+\frac{1}{x^4}=727\), then the value of \(x^3-\frac{1}{x^3}\). We need to use algebraic identities...
Method II:
Answer: \(140\)
Solution:
We know that if \(x^4+\frac{1}{x^4}=a\), then \(x^2+\frac{1}{x^2}=\sqrt{a+2}\) and \((x-\frac{1}{x})=\sqrt{\sqrt{a+2}-2}\).
Here, we have \(x^4+\frac{1}{x^4}=727\)
Therefore,
\(x^2+\frac{1}{x^2}=\sqrt{727+2}=\sqrt{729}=27\)
\((x-\frac{1}{x})=\sqrt{\sqrt{727+2}-2}\)
\(\Rightarrow (x-\frac{1}{x})=\sqrt{\sqrt{729}-2}\)
\(\Rightarrow (x-\frac{1}{x})=\sqrt{27-2}\)
\(\Rightarrow (x-\frac{1}{x})=\sqrt{25}=5\).
Also, \(x^3-\frac{1}{x^3}=(x-\frac{1}{x})(x^2+\frac{1}{x^2}+1)\).
Therefore,
\(x^3-\frac{1}{x^3}=5 \times (27+1)\)
\(\Rightarrow x^3-\frac{1}{x^3}=5 \times 28\)
\(\Rightarrow x^3-\frac{1}{x^3}=140\).
Therefore, If \(\mathbf{x^4+\frac{1}{x^4}=727}\), then the value of \(\mathbf{x^3-\frac{1}{x^3}}\) is \(\mathbf{140}\).
Method I:
Answer: \(\mathbf{140}\)
Solution:
Step 1: Use the identity and find the value of \(\mathbf{x^2+\frac{1}{x^2}}\):
Given: \(x^4+\frac{1}{x^4}=727\)
By adding \(2\) both sides we get
\(x^4+\frac{1}{x^4}+2=727+2\)
\(\Rightarrow (x^2)^2+\frac{1}{(x^2)^2}+2\cdot x^2\cdot \frac{1}{x^2}=729\)
\(\Rightarrow (x^2)^2+\left(\frac{1}{x^2}\right)^2+2\cdot x^2\cdot \left(\frac{1}{x}\right)^2=729\)
Here, \(a=x^2, b=\left(\frac{1}{x^2}\right)^2\), then the above equation becomes
\(\Rightarrow a^2+b^2+2ab=729\)
\(\Rightarrow (a+b)^2=729\)
\(\Rightarrow (a+b)^2=27^2\)
\(\Rightarrow (a+b)=27\)       \(\mathbf{[ ∵ \text{If } a^m= b^n, \text{then} \, a=b]}\)
As \(a=x^2, b=\left(\frac{1}{(x^2)}\right)^2\), substituting its value back we get
\(\Rightarrow (x^2+\frac{1}{x^2})=27\) .
Step 2: Find the value of \(\mathbf{ x-\frac{1}{x}}\):
Subtracting \(2\), both sides in above equation, we get
\(\Rightarrow (x^2+\frac{1}{x^2}-2)=27-2\)
\(\Rightarrow (x^2+\left(\frac{1}{x}\right)^2-2\cdot x \cdot \frac{1}{x})=25\)
\(\Rightarrow (x-\frac{1}{x})^2=25\)
\(\Rightarrow (x-\frac{1}{x})^2=5^2\)
\(\Rightarrow (x-\frac{1}{x})=5\).        \(\mathbf{[ ∵ \text{If } a^m= b^n, \text{then} \, a=b]}\)
Step 3: Use the identity to find the value of \(\mathbf{ x^3-\frac{1}{x^3}}\):
\( x^3-\frac{1}{x^3}=(x-\frac{1}{x})(x^2+\frac{1}{x^2}+x \cdot \frac{1}{x})\)
\(\mathbf{[∵ (a^3-b^3)=(a-b)(a^2+b^2+ab)]}\)
Substitute the value of \((x-\frac{1}{x})=5\) and \((x^2+\frac{1}{x^2})=27\) and simplify.
\(\therefore \quad x^3-\frac{1}{x^3}=(5)(27+1)\)
\(\Rightarrow  x^3-\frac{1}{x^3}=5 \times 28\)
\(\Rightarrow  x^3-\frac{1}{x^3}=140\)
Therefore, If \(\mathbf{x^4+\frac{1}{x^4}=727}\), then the value of \(\mathbf{x^3-\frac{1}{x^3}}\) is \(\mathbf{140}\).