0
Maths_Expert_3
If \(4^{2x+1}=8^{x+3}\), then \(x=?\)
0 Subscribers
Submit Answer
1 Answers
Best Answer
0
Given: \(4^{2x+1}=8^{x+3}\)
Step 1: Use the concept of prime factorization to write the number as the product of its power:
\(4=2×2=2^2\) and \(8=2×2×2=2^3\)
Therefore, \(4^{2x+1}=8^{x+3}\)
\(\Rightarrow (2^2)^{2x+1}=(2^3)^{x+3}\)
Step 2: Use the appropriate laws of exponents to simplify the expressions in in L.H.S and R.H.S:
\(\Rightarrow (2)^{2(2x+1)}=(2)^{3(x+3})\). \( [ (a^m)^n=a^{mn} ]\)
\(\Rightarrow 2(2x+1)=3(x+3) \)
Step 3: Solve the equation for x:
\(\Rightarrow 4x+2=3x+9 \)
\(\Rightarrow 4x-3x=9-2\)
\(\Rightarrow x=7\)
Therefore, \(x=7\).