0
Maths Expert_1
If \(3^{x-1}+3^{x+1}=90\), then \(x=?\)
0 Subscribers
Assign to:
Submit Answer
1 Answers
Best Answer
0
Given:Â \(3^{x-1}+3^{x+1}=90\)
Step 1: Simplify the expression in L.H.S
\(\Rightarrow 3^x \cdot 3^{-1}+3^x \cdot 3=90\)   [ \(∵ a^{m+n}=a^m \cdot a^n \)]
By taking \( 3^x\) common, we get
\(3^x(3^{-1}+ 3)=90\)
\(\Rightarrow 3^x (\frac{1}{3}+3)=90\)     [ \(∵ a^{-1}=\frac{1}{a} \)]
\(\Rightarrow 3^x (\frac{1+9}{3})=90\)
\(\Rightarrow 3^x (\frac{10}{3})=90\)
Step 2: By using laws of exponents Solve the equation for \(x\).
\(3^x=90 \times \frac{3}{10}\)
\(\Rightarrow 3^x=27\)
\(\Rightarrow 3^x=3^3\)
\(\Rightarrow x=3\)         [ \(∵ a^m=a^n \iff m=n \)]
Therefore, if \(3^{x-1}+3^{x+1}=90\) then \(x=3\).