Exercise 7.4 Integrate the function \(\frac{3x}{1+2x^4}\)
Given function is \(\frac{3x}{1+2x^4}\)
The integral of \(\frac{3x}{1+2x^4}\) is \(\int \frac{3x}{1+2x^4} dx\)
Step 1: Use substitution method to convert the integral into some of the known integral
\(\int \frac{3x}{1+2x^4} dx=\int \frac{3x}{1+2(x^2)^2} dx \)
\(=\int \frac{3x}{1+(\sqrt{2}x^2)^2} dx \)
Let \(x^2=t\), then \(\frac{d}{dx}x^2=\frac{dt}{dx} \Rightarrow xdx= \frac{dt}{2}\)
Therefore, \(\int \frac{3x}{1+2x^4} dx=\frac{3}{2} \int \frac{1}{1+(\sqrt{2}t)^2}dt\). ....(1)
Step 2: Compare the integral in (1) with the known integralÂ
The integral \(\int \frac{1}{1+(\sqrt{2}t)^2}dt \) is of the form \(\int \frac{1}{1+(ax)^2}dx= \frac{1}{a} \tan^{-1} (ax)\)
Therefore, \(\int \frac{1}{1+(\sqrt{2}t)^2}dt=\frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2}t)\)
Substitute back \(t=x^2\), we get
\(\int \frac{1}{1+(\sqrt{2}x^2)^2}dt=\frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2}x^2)+C\)
\(\Rightarrow \int \frac{3x}{1+2x^4} dx=\frac{3}{2} \times \frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2}x^2)+C\)
Therefore, \(\int \frac{3x}{1+2x^4} dx=\frac{3}{3\sqrt{2}} \tan^{-1}(\sqrt{2}x^2)+C\).