IIT JEE 2001 Question.
Answer: option (b) \(\mathbf{1}\)
Solution:
Given: \(\log_4(x-1)=\log_2(x-3)\)
\(\log_{2^2}(x-1)=\log_2(x-3)\)
\(\Rightarrow\frac{1}{2}\log_{2}(x-1)=\log_2(x-3)\)    \(\mathbf{ [∵ \log_{a^m}(x)=\frac{1}{m} \log_a(x)]}\)
\(\Rightarrow \log_{2}(x-1)=2\log_2(x-3)\)
\(\Rightarrow \log_{2}(x-1)=\log_2(x-3)^2\)      \(\mathbf{ [∵ n\log_ax=\log_ax^n]}\)
\(\Rightarrow (x-1)=(x-3)^2\)      \(\mathbf{ [∵\log_a(x)=\log_a(y)\implies x=y]}\)
\(\Rightarrow (x-1)=x^2+9-6x\)     \(\mathbf{ [∵(a-b)^2=a^2+b^2-2ab]}\)
\(\Rightarrow x^2-7x+10=0\)
\(\Rightarrow x^2-2x-5x+10=0\)
\(\Rightarrow x(x-2)-5(x-2)=0\)
\(\Rightarrow (x-2)(x-5)=0\)
\(\Rightarrow  (x-2)=0, (x-5)=0\)
\(\Rightarrow x=2, x=5\)
The equality in \(\log_4(x-1)=\log_2(x-3)\) holds only if \(x-3>0 \implies x>3\)
So only value of \(x\) which satisfy the equation is \(x=5\).
Therefore, the number of solution is \(1\).
Hence, option (b) \(\mathbf{1}\) is correct answer.