Prove that \(\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}=1\), if \(pqr=1\)
Solution:
Given: \(pqr=1\)
To prove: \(\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}=1\)
\(\text{L.H.S}=\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}\)
We will make the denominator of each term same by using the given condition \(pqr=1\).
\(q^{-1}=\frac{1}{q}\)     \([\, ∵ a^{-1}=\frac{1}{a}]\)
\(pqr=1\implies pq=\frac{1}{r}=r^{-1}\) \([\, ∵ a^{-1}=\frac{1}{a}]\)
\(pqr=1\implies r=\frac{1}{pq} \)
Substituting these values, we get
\(\text{L.H.S}= \frac{1}{1+p+\frac{1}{q}}+\frac{1}{1+q+pq}+\frac{1}{1+\frac{1}{pq}+\frac{1}{p}}\)
\(= \frac{1}{\frac{q+pq+1}{q}}+\frac{1}{1+q+pq}+\frac{1}{\frac{pq+1+q}{pq}}\)
\(=\frac{q}{q+pq+1}+\frac{1}{1+q+pq}+\frac{pq}{pq+1+q}\)
\(=\frac{q}{1+q+pq}+\frac{1}{1+q+pq}+\frac{pq}{1+q+pq}\)
\(=\frac{q+1+pq}{1+q+pq}\)
\(=\frac{1+q+pq}{1+q+pq}\)
\(=1=\text{R.H.S}.\)
Therefore, if \(\mathbf{pqr=1}\), then \(\mathbf{\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}=1}.\)
Alternative Method:
Given: \(pqr=1\), this equation is satisfied for \(p=q=r=1\).
To prove: \(\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}=1\)
\(\text{L.H.S}=\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}\)
Substituting the values of \(p=q=r=1\), we get
\(\text{L.H.S}=\frac{1}{1+1+1^{-1}}+\frac{1}{1+1+1^{-1}}+\frac{1}{1+1+1^{-1}}\)
\(=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}\)
\(=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)
\(=\frac{1+1+1}{3}\)
\(=\frac{3}{3}\)
\(=1=\text{R.H.S}\)
Therefore, if \(\mathbf{pqr=1}\), then \(\mathbf{\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}=1}.\)