If α and β are the zeroes of the polynomial \(x^2+5x+c\), and \( α-β=3\), then \(c=\)? a) 0 b) 1 c) 4 d) 5
Answer: Option c. 4
Solution:
Step 1: Use the concepts of relationship between roots and coefficients of quadratic polynomial.
Given polynomial is \(x^2+5x+c\), by comparing it standard quadratic polynomial \(ax^2+bx+c\), we get
\(a=1, \quad b=5, \quad c=c\)
\( \alpha+\beta= \frac{-b}{a}=\frac{-5}{1} = -5 \) ....(1)
\(\alpha \beta= \frac{c}{a}=\frac{c}{1} =c\) ....(2)
\(\alpha-\beta= 3\) .....(3) [given]
Step 2: Find the value of α and β
By adding (1) and (2), we get
\(\alpha+\beta +\alpha-\beta= -5+3\)
\(\Rightarrow 2\alpha = -2\)
\(\Rightarrow \alpha = \frac{-2}{2}=-1\)
Put the value of \(α= -1\) in (1), we get
\(-1+\beta= -5\)
\(\Rightarrow \beta= -5+1\)
\(\Rightarrow \beta= -4\)
Step 3: Use the concept of product of roots of quadratic polynomial
\(∵ \quad \alpha\times \beta = \frac{c}{a}\)
\(\therefore \quad \alpha\times \beta = \frac{c}{1}=c\)
Substitute the value of \(\alpha\) and \(\beta\), we get
\(c=-1 \times -4\)
\(\Rightarrow c=4\)
Hence, the value of c is 4.