If α and β are the zeroes of the polynomial \(x^2+5x+c\), and \( α-β=2\), then \(c=\)? a) 0 b) \(-\frac{21}{4}\) c) \(\frac{21}{4}\) d) 5
Answer: Option c. \(\frac{21}{4}\)
Solution:
Step 1: Use the concepts of relationship between roots and coefficients of quadratic polynomial.
Given polynomial is \(x^2+5x+c\), by comparing it standard \quadratic polynomial \(ax^2+bx+c\), we get
\(a=1, \quad b=5, \quad c=c\)
\( \alpha+\beta= \frac{-b}{a}=\frac{-5}{1} = -5 \) ....(1)
\(\alpha \beta= \frac{c}{a}=\frac{c}{1} =c\) ....(2)
\(\alpha-\beta= 2\) .....(3) [given]
Step 2: Find the value of α and β
By adding (1) and (2), we get
\(\alpha+\beta +\alpha-\beta= -5+2\)
\(\Rightarrow 2\alpha = -3\)
\(\Rightarrow \alpha = \frac{-3}{2}\)
Put the value of \(α= \frac{-3}{2}\) in (1), we get
\(\frac{-3}{2}+\beta= -5\)
\(\Rightarrow \beta= -5+\frac{3}{2}\)
\(\Rightarrow \beta= \frac{-10+3}{2}\)
\(\Rightarrow \beta= \frac{-7}{2}\)
Step 3: Use the concept of product of roots of quadratic polynomial
\(∵ \quad \alpha\times \beta = \frac{c}{a}\)
\(\therefore \quad \alpha\times \beta = \frac{c}{1}=c\)
Substitute the value of \(\alpha\) and \(\beta\), we get
\(c= \frac{-3}{2} \times \frac{-7}{2}\)
\(\Rightarrow c=\frac{21}{4}\)
Hence, the value of c is \(\frac{21}{4}\).