If α and β are the zeroes of the polynomial \(2x^2+4x+5\), then find the value of \(α^3+β^3\).
- -7
- 7
- 6
- 5
Answer: Option b. 7
Solution:
Step 1: Use the concepts of relationship between roots and coefficients of quadratic polynomial.
Given polynomial is \(2x^2+4x+5\), by comparing it standard quadratic polynomial \(ax^2+bx+c\), we get
\(a=2, \quad b=4, \quad c=5\)
\( \alpha+\beta= \frac{-b}{a}=\frac{-4}{2} = -2 \) ....(1)
\(\alpha \beta= \frac{c}{a}=\frac{5}{2} \) ....(2)
Step 2: Use the algebraic identity for the sum of cube of any two numbers
\(α^3+β^3=(α+β)(α^2+β^2-αβ)\)
\(\quad \quad =-2\times(α^2+β^2-αβ)\) [ Using (1)]
\(\quad \quad =-2\times((α+β)^2-3αβ)\)
[∵ \(α^2+β^2=(α+β)^2-2αβ\)]
\(\quad \quad =-2\times(4-3\times\frac{5}{2})\) [ Using (1) and (2)]
\(\quad \quad =-2\times(4-\frac{15}{2})\)
\(\quad \quad =-2\times(\frac{8-15}{2})\)
\(\quad \quad =-2\times(\frac{-7}{2})\)
\(\quad \quad =7\)
\(\therefore α^3+β^3 =7\)
Hence, the value of \(α^3+β^3\) is \(7\).